

FEATURES

1. 2,000 V breakdown voltage between contact and coil

The body block construction of the coil that is sealed at formation offers a high breakdown voltage of 2,000 V between contact and coil, and 1,000 V between open contacts.

 2. Outstanding surge resistance. Surge breakdown voltage between open contacts: 1,500 V 10×160µbsec. (FCC part 68) Surge breakdown voltage between contact and coil: 2,500 V 2×10µbsec. (Bellcore)

2 A CAPACITY RELAY WITH HIGH SURGE BREAKDOWN VOLTAGE & HIGH BREAKDOWN VOLTAGE

3. Nominal operating power: High sensitivity of 140mW

By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved.

4. High contact capacity: 2 A 30 V DC 5. Compact size

15.0(L) × **7.4(W)** × **8.2(H)** .591(L) × .291(W) × .323(H)

6. The use of gold-clad twin crossbar contacts ensures high contact reliability.

*We also offer a range of products with AgPd contacts suitable for use in low level load analog circuits (Max. 10V DC 10 mA). *SX relays designed for low level

loads are also available.

7. Outstanding vibration and shock resistance. Functional shock resistance: 750 m/s²

Destructive shock resistance: 1,00 m/s² 1,000 m/s²

Functional vibration resistance: 10 to 55 Hz (at double amplitude of 3.3 mm .130 inch)

TX RELAYS

Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)

- 8. Sealed construction allows automatic washing.
- 9. A range of surface-mount types is also available

SA: Low-profile surface-mount terminal type SL: High connection reliability surfacemount terminal type SS: Space saving surface-mount terminal type

TYPICAL APPLICATIONS

- 1. Communications (XDSL, Transmission)
- 2. Measurement
- 3. Security
- 4. Home appliances, and audio/visual equipment
- 5. Automotive equipment
- 6. Medical equipmen

ORDERING INFORMATION

	_				
Contact arrangement 2: 2 Form C					
Surface-mount availability Nil: Standard PC board terminal type or self-clinching terminal type SA: SA type SL: SL type SS: SS type	-				
Operating function Nil: Single side stable L: 1 coil latching L2: 2 coil latching					
Terminal shape Nil: Standard PC board terminal or surface-mount terminal H: Self-clinching terminal					
Coil voltage (DC)* 1.5, 3, 4.5, 5, 6, 9, 12, 24, 48V					
Contact material Nil: Standard contact (Ag+Au clad) 1: AgPd contact (Iow level load); AgPd+Au clad (stationary), AgPd (movable)					
Packing style Nil: Tube packing X: Tape and reel (picked from 1/3/4/5-pin side) Z: Tape and reel packing (picked from the 8/9/10/12-pin side)					
Notes: 1. *48 V coil type: Single side stable only					

In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

TYPES

1. Standard PC board terminal

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching	
arrangement	voltage	Part No.	Part No.	Part No.	
	1.5V DC	TX2-1.5V	TX2-L-1.5V	TX2-L2-1.5V	
	3V DC	TX2-3V	TX2-L-3V	TX2-L2-3V	
	4.5V DC TX2-4.5V		TX2-L-4.5V	TX2-L2-4.5V	
	5V DC	TX2-5V	TX2-L-5V	TX2-L2-5V	
2 Form C	6V DC	TX2-6V	TX2-L-6V	TX2-L2-6V	
	9V DC	TX2-9V	TX2-L-9V	TX2-L2-9V	
-	12V DC	TX2-12V	TX2-L-12V	TX2-L2-12V	
	24V DC	TX2-24V	TX2-L-24V	TX2-L2-24V	
	48V DC	TX2-48V	_	_	

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.

Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

2. self-clinching terminal

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching	
arrangement	voltage	Part No.	Part No.	Part No.	
	1.5V DC	TX2-H-1.5V	TX2-L-H-1.5V	TX2-L2-H-1.5V	
	3V DC	TX2-H-3V	TX2-L-H-3V	TX2-L2-H-3V	
	4.5V DC	TX2-H-4.5V	TX2-L-H-4.5V	TX2-L2-H-4.5V	
	5V DC	TX2-H-5V	TX2-L-H-5V	TX2-L2-H-5V	
2 Fom C	6V DC	TX2-H-6V	TX2-L-H-6V	TX2-L2-H-6V	
	9V DC	TX2-H-9V	TX2-L-H-9V	TX2-L2-H-9V	
-	12V DC	TX2-H-12V	TX2-L-H-12V	TX2-L2-H-12V	
	24V DC	TX2-H-24V	TX2-L-H-24V	TX2-L2-H-24V	
	48V DC	TX2-H-48V	_	_	

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs. Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

3. Surface-mount terminal

1) Tube packing

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching
arrangement	voltage	Part No.	Part No.	Part No.
	1.5V DC	TX2S□-1.5V	TX2S□-L-1.5V	TX2S□-L2-1.5V
	3V DC	TX2S□-3V	TX2S□-L-3V	TX2S□-L2-3V
	4.5V DC	TX2S□-4.5V	TX2S□-L-4.5V	TX2S□-L2-4.5V
	5V DC	TX2S□-5V	TX2S□-L-5V	TX2S□-L2-5V
2c	6V DC	TX2S□-6V	TX2S□-L-6V	TX2S□-L2-6V
	9V DC	TX2S□-9V	TX2S□-L-9V	TX2S□-L2-9V
-	12V DC	TX2S□-12V	TX2S□-L-12V	TX2S -L2-12V
	24V DC	TX2S□-24V	TX2S□-L-24V	TX2S□-L2-24V
	48V DC	TX2S□-48V	_	—

: For each surface-mounted terminal identification, input the following letter. SA type: A, SL type: L, SS type: S

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs. Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

2) Tape and reel packing

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching	
arrangement	voltage	Part No.	Part No.	Part No.	
	1.5V DC	TX2S□-1.5V-Z	TX2S -L-1.5V-Z	TX2S□-L2-1.5V-Z	
	3V DC	TX2S -3V-Z	TX2S□-L-3V-Z	TX2S -L2-3V-Z	
	4.5V DC	TX2S4.5V-Z	TX2S -L-4.5V-Z	TX2S□-L2-4.5V-Z TX2S□-L2-5V-Z	
	5V DC	TX2S□-5V-Z	TX2S -L-5V-Z		
2 Form C	6V DC	TX2S_6V-Z	TX2S□-L-6V-Z	TX2S□-L2-6V-Z	
	9V DC	TX2S -9V-Z	TX2S -L-9V-Z	TX2S -L2-9V-Z	
	12V DC	TX2S -12V-Z	TX2S -L-12V-Z	TX2S -L2-12V-Z	
	24V DC	TX2S -24V-Z	TX2S -L-24V-Z	TX2S -L2-24V-Z	
	48V DC	TX2S -48V-Z	_	_	

Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs. Notes: 1. Tape and reel packing symbol "-Z" is not marked on the relay. "X" type tape and reel packing (picked from 1/2/3/4-pin side) is also available. 2. Please add "-1" to the end of the part number for AgPd contacts (low level load).

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at 20°C 68°F)	Drop-out voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. allowable voltage (at 20°C 68°F)
1.5V DC			93.8mA	16Ω		
3V DC			46.7mA	64.3Ω		
4.5V DC			31mA	145Ω	140mW	150%V of nominal voltage
5V DC		75%V or less of 10%V or more of 10minal voltage*	28.1mA	178Ω		
6V DC	75%V or less of nominal voltage*		23.3mA	257Ω		
9V DC	(Initial)	(Initial)	15.5mA	579Ω		
12V DC		(11.7mA	1,028Ω		
24V DC			5.8mA	4,114Ω		
48V DC			5.6mA	8,533Ω	270mW	120%V of nominal voltage

2) 1 coil latching

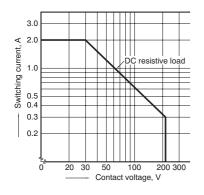
Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. allowable voltage (at 20°C 68°F)
1.5V DC			66.7mA	22.5Ω		
3V DC				90Ω		
4.5V DC			22.2mA	202.5Ω		
5V DC		75%V or less of nominal voltage* (Initial) 75%V or less of nominal voltage* (Initial)	20mA	250Ω	100mW	150%V of nominal voltage
6V DC			16.7mA	360Ω		
9V DC	(initial)		11.1mA	810Ω		
12V DC			8.3mA	1,440Ω		
24V DC			4.2mA	5,760Ω		

3) 2 coil latching

Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	cur	operating rent 20°C 68°F)		sistance 20°C 68°F)	Nominal operating power		Max. allowable voltage (at 20°C 68°F	
Ū		. ,	Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	, , , , , , , , , , , , , , , , , , ,	
1.5V DC			133.9mA	133.9mA	11.2Ω	11.2Ω				
3V DC				66.7mA	66.7mA	45Ω	45Ω			
4.5V DC			44.5mA	44.5mA	101.2Ω	101.2Ω	- 200mW	200mW	150%V of nominal voltage	
5V DC		75%V or less of nominal voltage* (Initial) 75%V or less of nominal voltage* (Initial)	40mA	40mA	125Ω	125Ω				
6V DC			33.3mA	33.3mA	180Ω	180Ω				
9V DC	(initial)		22.2mA	22.2mA	405Ω	405Ω				
12V DC			16.7mA	16.7mA	720Ω	720Ω				
24V DC			8.3mA	8.3mA	2,880Ω	2,880Ω				

*Pulse drive (JIS C 5442-1986)

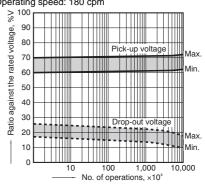
Specifications


Characteristics		Item	Specifications		
	Arrangement		2 Form C		
Contact	Initial contact resista	nce, max.	Max. 100 mΩ (By voltage drop 6 V DC 1A)		
Contact	Contract motorial		Standard contact: Ag+Au clad,		
	Contact material		AgPd contact (low level load): AgPd+Au clad (stationary), AgPd (movable)		
	Nominal switching capacity (resistive load)		Standard contact: 2 A 30 V DC, AgPd contact: 1 A 30 V DC		
	Max. switching powe	r (resistive load)	Standard contact: 60 W (DC), AgPd contact: 30 W (DC)		
	Max. switching voltage	ge	220V DC		
Datian	Max. switching curre	nt	Standard contact: 2 A, AgPd contact: 1 A		
Rating	Min. switching capac	ty (Reference value) ^{∗1}	10µA 10mV DC		
		Single side stable	140 mW (1.5 to 24 V DC), 270 mW (48 V DC)		
	Nominal operating	1 coil latching	100 mW (1.5 to 24 V DC)		
	power	2 coil latching	200 mW (1.5 to 24 V DC)		
	Insulation resistance (Initial)		Min. 1,000MΩ (at 500V DC)		
			Measurement at same location as "Initial breakdown voltage" section.		
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1min. (Detection current: 10mA)		
		Between contact and coil	2,000 Vrms for 1min. (Detection current: 10mA)		
		Between contact sets	1,000 Vrms for 1min. (Detection current: 10mA)		
Electrical	Surge breakdown	Between open contacts	1,500 V (10×160µs) (FCC Part 68)		
characteristics	voltage (Initial)	Between contacts and coil	2,500 V (2×10µs) (Telcordia)		
	Temperature rise (at 20°C 68°F)		Max. 50°C		
			(By resistive method, nominal voltage applied to the coil; contact carrying current: 2A.)		
	Operate time [Set time] (at 20°C 68°F)		Max. 4 ms [Max. 4 ms] (Nominal voltage applied to the coil, excluding contact bounce tim		
	Release time [Reset time] (at 20°C 68°F)		Max. 4 ms [Max. 4 ms] (Nominal voltage applied to the coil, excluding contact bounce time. (without diode)		
	Shock resistance	Functional	Min. 750 m/s ² (Half-wave pulse of sine wave: 6 ms; detection time: 10µs.)		
Mechanical	Shock resistance	Destructive	Min. 1,000 m/s ² (Half-wave pulse of sine wave: 6 ms.)		
characteristics	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: 10µs.)		
	vibration resistance	Destructive	10 to 55 Hz at double amplitude of 5 mm		
	Mechanical		Min. 10 ⁸ (at 180 cpm)		
Expected life	Electrical		Min. 10 ⁵ (2 A 30 V DC resistive), 5×10 ⁵ (1 A 30 V DC resistive) (at 20 cpm)		
			Ambient temperature: -40°C to +85°C (up to 24 V coil) -40°F to +185°F (up to 24 V coil)		
Conditions	Conditions for operation	tion, transport and storage ^{*2}	[-40°C to +70°C (48 V coil) -40°F to +158°F (48 V coil)];		
Conditions			Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)		
	Max. operating spee	d (at rated load)	20 cpm		
Unit weight			Approx. 2 g .071 oz		

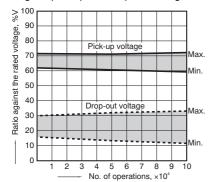
Notes

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (AgPd contact type or SX relays are available for low level load switching [10V DC, 10mA max. level])
*2 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (p. 19, Relay Technical Information).

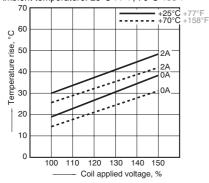
REFERENCE DATA


1. Maximum switching capacity

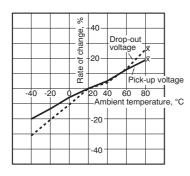
2. Life curve

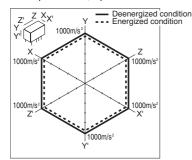


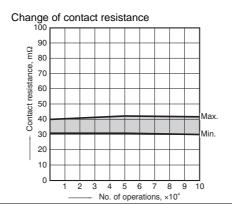
3. Mechanical life Tested sample: TX2-5V, 10 pcs. Operating speed: 180 cpm



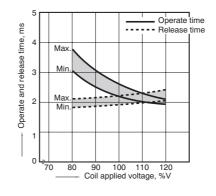
4. Electrical life (2A 30V DC resistive load) Tested sample: TX2-5V, 6 pcs. Operating speed: 20 cpm


Change of pick-up and drop-out voltage

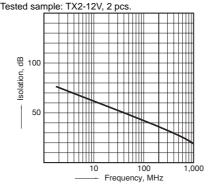

5-(2). Coil temperature rise Tested sample: TX2-48V, 6 pcs. Point measured: Inside the coil Ambient temperature: 25°C 77°F, 70°C 158°F

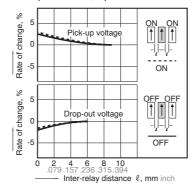


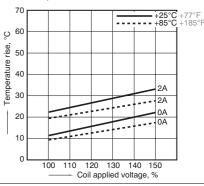
7. Ambient temperature characteristics Tested sample: TX2-5V, 5 pcs.

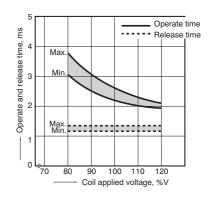


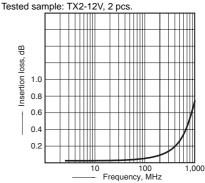
9 Malfunctional shock (single side stable) Tested sample: TX2-5V, 6 pcs.

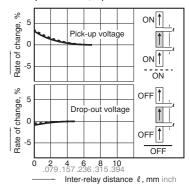


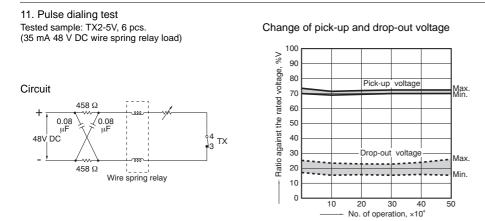

6-(1). Operate and release time (with diode) Tested sample: TX2-5V, 10 pcs.


8-(1). High frequency characteristics (Isolation)

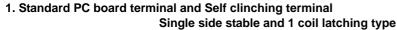

10-(1). Influence of adjacent mounting Tested sample: TX2-12V, 6 pcs.

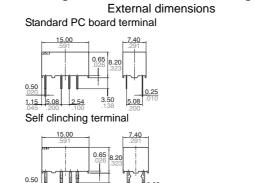

5-(1). Coil temperature rise Tested sample: TX2-5V, 6 pcs. Point measured: Inside the coil Ambient temperature: 25°C 77°F, 85°C 185°F


6-(2). Operate and release time (without diode) Tested sample: TX2-5V, 10 pcs.

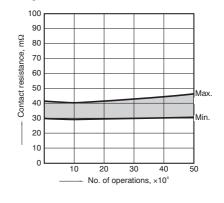


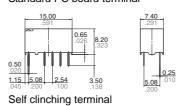
8-(2). High frequency characteristics (Insertion loss)

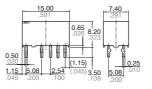

10-(2). Influence of adjacent mounting Tested sample: TX2-12V, 6 pcs.



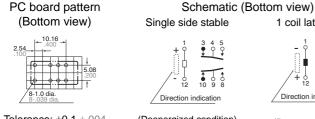
Note: Data of surface-mount type are the same as those of PC board terminal type.


DIMENSIONS (Unit: mm inch)





Change of contact resistance



2 coil latching type External dimensions Standard PC board terminal

General tolerance: ±0.3 ±.012

1.15 5.08

Tolerance: $\pm 0.1 \pm .004$

(Deenergized condition)

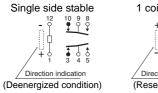
(Reset condition)

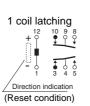
Direction indicatio

1 coil latching

Tolerance: ±0.1 ±.004

General tolerance: $\pm 0.3 \pm .012$ Schematic (Bottom view) 2 coil latching


(Reset condition)


2. Surface-mount terminal

	External dimensions (Gen	eral tolerance: $\pm 0.3 \pm .012$)	Suggested mounting pad (Top view) (Tolerance: $\pm 0.1 \pm .004$)		
Туре	Single side stable and 1 coil latching type	2 coil latching type	Single side stable and 1 coil latching type	2 coil latching type	
SA type	15 591 → 7.4 322 8.4 331 → 0.25 0.5 → 5.08 → 2.54 9.4 0.65 ↓ 5.08 ↓ 0.25 0.20 ↓ 100 → 370±.020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5.08 \\ 2.54 \\ 1.24 \\ 1.24 \\ 1.24 \\ 1.24 \\ 1.124$	5.08 -124	
SL type	15 7.4 221 0.51 0.65 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.20 0.65 0.26 0.26 0.25 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.26 0.26 0.27 0.20 0.25 0.26 0.27 0.20 0.25 0.26 0.27 0.20 0.25 0.27 0.20 0.25 0.27 0.25	15 .591 .591 .591 .591 .323 .324 .326 .3	$\begin{array}{c} 5.08 \\ 2.54 \\ 124 \\ 124 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	3.16.039 .124 .124 .124 .124 .124 .124 .10 .100 .1	
SS type	15 .591 .320 .020 .020 .020 .020 .020 .020 .020	15 591 8.2 Max.10 394 394 0.65 5.08 2.54 5.08 2.00 .020	2.16.1 .035 .039 .045 .039 .045 .039 .100 .100 .100 .100 .100 .100 .100 .10	2.16 1 2200 2.54 100 100 100 100 100 100 100 100 100 10	

Schematic (Top view)

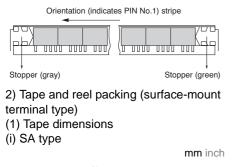
NOTES

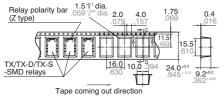
1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple

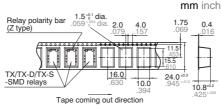
factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 10 ms to set/reset the latching type relay.

2. Coil connection

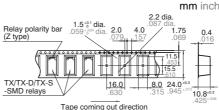

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

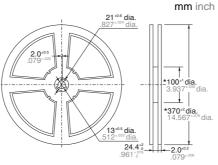

3. External magnetic field

Since T series relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.


4. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.





(2) Dimensions of plastic reel

Note: Dimensions of items produced after December 2006 have changed as shown below. 100⁺¹ dia. 3,93^{+.090} dia. → 80⁺¹ dia. 3,150^{+.099} dia.; 370⁺² dia. 14.567^{+.079} dia. → 380⁺² dia. 14.961^{+.079} dia.

5. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.

Chucking pressure in the direction A: 4.9 N {500gf} or less Chucking pressure in the direction B:

9.8 N {1 kgf} or less

Chucking pressure in the direction C: 9.8 N {1 kgf} or less

Please chuck the portion. Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

6. Others

1) If in error the relay has been dropped, the appearance and characteristics should be checked before use without fail.

2) The cycle lifetime is defined under the standard test condition specified in the JIS* C 5442-1986 standard (temperature 15° C to 35° C 59° F to 95° F, humidity 25% to 85%). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions, and other factors.

For Cautions for Use, see Relay Technical Information.