General Description
The 'LS299 is an 8-bit universal shift/storage register with

TRI-STATE® ${ }^{\circledR}$ outputs. Four modes of operation are possi-
ble: hold (store), shift left, shift right and load data. The par-
allel load inputs and flip-flop outputs are multiplexed to re-
duce the total number of package pins. Separate outputs
are provided for flip-flops Qo and Q7 to allow easy cascad-
ing. A separate active LOW Master Reset is used to reset
the register.

Connection Diagram

TL/F/9827-1
Order Number DM54LS299E, DM54LS299J, DM54LS299W,
DM74LS299WM or DM74LS299N
See NS Package Number E20A, J20A, M20B, N20A or W20A

Pin Names	Description
CP	Clock Pulse Input (Active Rising Edge)
$D_{\text {S0 }}$	Serial Data Input for Right Shift
$D_{S 7}$	Serial Data Input for Left Shift
S0, S1	Mode Select Inputs
$\overline{M R}$	Asynchronous Master Reset Input (Active LOW)
$\overline{O E 1, ~ \overline{O E 2 ~}}$	TRI-STATE Output Enable Inputs (Active LOW)
I/O0-I/O7	Parallel Data Inputs or TRI-STATE Parallel Outputs
Q0-Q7	Serial Outputs

[^0]Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS299			DM74LS299			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
IOH^{\prime}	High Level Output Current	Q0, Q7			-0.4			-0.4	mA
		I/O0-1/07			-2.6			-2.6	mA
IOL	Low Level Output Current	Q0, Q7			4			8	mA
		I/O0-1/07			12			24	mA
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{array}{r} \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ \hline \end{array}$	Setup Time HIGH or LOW S0 or S1 to CP		$\begin{array}{r} 24 \\ 24 \\ \hline \end{array}$			$\begin{aligned} & 24 \\ & 24 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW S0 or S1 to CP		$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{D}_{\mathrm{SO}}, \mathrm{D}_{\mathrm{S7}}$ to CP		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{D}_{\mathrm{S} 0}, \mathrm{D}_{\mathrm{S} 7}$ to CP		$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse Width HIGH or LOW		$\begin{array}{r} 15 \\ 15 \\ \hline \end{array}$			$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { MR Pulse Width LOW }}$		15			15			ns
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP		10			10			ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions			Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$					-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		DM54	2.5			
			Q0, Q7		2.7	3.4		V
			I/O0-I/O7		2.4			
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		DM54			0.4	
				DM74		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{I}}=10 \mathrm{~V}(\mathrm{DM} 54) \\ & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}(\mathrm{DM} 74) \end{aligned}$		Inputs			0.1	mA
				Sn			0.2	mA

Electrical Characteristics (Continued)							
Symbol	Parameter	Condit		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=2.7 \mathrm{~V}$	Sn			40	$\mu \mathrm{A}$
			Inputs			20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	Sn			-0.8	mA
			Inputs			-0.4	mA
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	-20		-100	mA
			$\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	-30		-130	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{OE}}=4.5 \mathrm{~V}$				60	mA
lozh	TRI-STATE Output Off Current High	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \end{aligned}$				40	$\mu \mathrm{A}$
lozL	TRI-STATE Output Off Current Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$				-400	$\mu \mathrm{A}$

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	$\begin{aligned} & \mathbf{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
		Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Input Frequency	35		MHz
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to Q0 or Q7		$\begin{aligned} & 26 \\ & 28 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$		$\begin{aligned} & 25 \\ & 35 \\ & \hline \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q0 or Q7		28	ns
$t_{\text {PHL }}$	Propagation Delay $\overline{M R}$ to I / O_{n}		35	ns
$\begin{aligned} & \text { tpZH } \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{array}{r} 18 \\ 25 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 15 \\ & 20 \end{aligned}$	ns

Logic Symbol

TL/F/9827-2
$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 20$
$\mathrm{GND}=\operatorname{Pin} 10$

Functional Description

The 'LS299 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by the S0 and S 1 , as shown in the Mode Select Table. All flip-flop outputs are brought out through TRI-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q0 and Q7 are also brought out on other pins for expansion in serial shifting of longer words.
A LOW signal on $\overline{M R}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.

A HIGH signal on either OE1 or OE2 disables the TRISTATE buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The TRI-STATE buffers are also disabled by HIGH signals on both S0 and S1 in preparation for a parallel load operation.

Mode Select Table				
Inputs				Response
$\overline{\text { MR }}$	S1	So	CP	
L	X	X	X	Asynchronous Reset; Q0-Q7 = LOW
H	H	H	-	Parallel Load; $\mathrm{I} / \mathrm{O}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$
H	L	H	-	Shift Right; $\mathrm{D}_{\mathrm{SO}} \rightarrow \mathrm{Q} 0, \mathrm{Q} 0 \rightarrow$ Q1, etc.
H	H	L	-	Shift Left; $\mathrm{D}_{\text {S7 }} \rightarrow$ Q7, Q7 \rightarrow Q6, etc.
H	L	L	X	Hold

$H=H I G H$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
X = Immaterial

Physical Dimensions inches (millimeters)

Ceramic Leadless Chip Carrier Package (E) Order Number DM54LS299E

NS Package Number E20A

20-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS299J
NS Package Number J20A

Physical Dimensions inches (millimeters) (Continued)

Physical Dimensions inches (millimeters) (Continued)

20-Lead Ceramic Flat Package (W) Order Number DM54LS299W NS Package Number W20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

[^0]: TRI-STATE is a registered trademark of National Semiconductor Corporation

