BD676, BD676A, BD678, BD678A, BD680, BD680A, BD682

Plastic Medium-Power Silicon PNP Darlingtons

...for use as output devices in complementary general-purpose amplifier applications.

- High DC Current Gain -
$\mathrm{h}_{\mathrm{FE}}=750(\mathrm{Min}) @ \mathrm{I}_{\mathrm{C}}=1.5$ and 2.0 Adc
- Monolithic Construction
- BD676, 676A, 678, 678A, 680, 680A, 682 are complementary with BD675, 675A, 677, 677A, 679, 679A, 681
- BD 678, 678A, 680, 680A are equivalent to MJE 700, 701, 702, 703

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BD676, BD676A BD678, BD678A BD680, BD680A BD682	$\mathrm{V}_{\text {CEO }}$	$\begin{gathered} 45 \\ 60 \\ 80 \\ 100 \end{gathered}$	Vdc
Collector-Base Voltage BD676, BD676A BD678, BD678A BD680, BD680A BD682	V_{CB}	$\begin{gathered} 45 \\ 60 \\ 80 \\ 100 \end{gathered}$	Vdc
Emitter-Base Voltage	$V_{E B}$	5.0	Vdc
Collector Current	${ }^{\text {I }}$	4.0	Adc
Base Current	IB	0.1	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{gathered} 40 \\ 0.32 \end{gathered}$	$\begin{gathered} \text { W } \\ \text { W/ }{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance - Junction to Case	R $_{\text {日JC }}$	3.13	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ON Semiconductor ${ }^{\text { }}$

http://onsemi.com

4.0 AMPERE DARLINGTON
 POWER TRANSISTORS PNP SILICON
 45, 60, 80, 100 VOLTS 40 WATTS

TO-225AA CASE 77 STYLE 1

MARKING DIAGRAM

Y = Year
WW = Work Week
BD6xxx = Specific Device Code
xxx $\quad=76,76 \mathrm{~A}, 78,78 \mathrm{~A}, 80,80 \mathrm{~A}$ or 82

ORDERING INFORMATION		
Device	Package	Shipping
BD676	TO-225AA	500 Units/Box
BD676A	TO-225AA	500 Units/Box
BD678	TO-225AA	500 Units/Box
BD678A	TO-225AA	500 Units/Box
BD680	TO-225AA	500 Units/Box
BD680A	TO-225AA	500 Units/Box
BD682	TO-225AA	500 Units/Box

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (Note 1) $\left(\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	BD676, 676A BD678, 678A BD680, 680A BD682	$\mathrm{BV}_{\text {CEO }}$	$\begin{gathered} 45 \\ 60 \\ 80 \\ 100 \end{gathered}$	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=$ Half Rated $\mathrm{V}_{\mathrm{CEO}}, \mathrm{I}_{\mathrm{B}}=0$)		ICEO	-	500	$\mu \mathrm{Adc}$
Collector Cutoff Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CB}}=\text { Rated } B \mathrm{~V}_{\mathrm{CEO}}, \mathrm{I}_{\mathrm{E}}=0\right) \\ & \left(\mathrm{V}_{\mathrm{CB}}=\text { Rated } B \mathrm{BV}_{\mathrm{CEO}} \cdot \mathrm{I}_{\mathrm{E}}=0, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$		ICBO	-	$\begin{aligned} & 0.2 \\ & 2.0 \end{aligned}$	mAdc
Emitter Cutoff Current ($\mathrm{V}_{\mathrm{BE}}=5.0 \mathrm{Vdc}, \mathrm{I} \mathrm{C}=0$)		IEBO	-	2.0	mAdc

ON CHARACTERISTICS

$\begin{aligned} & \text { DC Current Gain (Note } 1 \text {) } \\ & \text { (IC } \left.=1.5 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{IC}=2.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}\right) \end{aligned}$	BD676, 678, 680, 682 BD676A, 678A, 680A	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 750 \\ & 750 \end{aligned}$	-	
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage (Note 1) } \\ & \left(I_{C}=1.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=30 \mathrm{mAdc}\right) \\ & \left(\mathrm{I} \mathrm{C}=2.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{mAdc}\right) \end{aligned}$	$\begin{aligned} & \text { BD678, 680, } 682 \\ & \text { BD676A, 678A, 680A } \end{aligned}$	V_{CE} (sat)	-	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	Vdc
$\begin{gathered} \text { Base-Emitter On Voltage (Note 1) } \\ \left(\mathrm{IC}=1.5 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}\right) \\ \left(\mathrm{IC}=2.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}\right) \end{gathered}$	$\begin{aligned} & \text { BD678, 680, } 682 \\ & \text { BD676A, 678A, 680A } \end{aligned}$	V_{BE} (on)	-	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	Vdc

DYNAMIC CHARACTERISTICS

Small-Signal Current Gain (IC $\left.=1.5 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	h_{fe}	1.0	-	-

1. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

Figure 1. Power Temperature Derating

CE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

There are two limitations on the power handling ability of a transistor average junction temperature and secondary breakdown. Safe operating area curves indicate $\mathrm{I}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}}$ limits of the transistor that must be observed for reliable operation; e.g., the transistor must not be subjected to greater dissipation than the curves indicate.

At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.

Figure 3. Darlington Circuit Schematic

BD676, BD676A, BD678, BD678A, BD680, BD680A, BD682

PACKAGE DIMENSIONS

TO-126
TO-225AA
CASE 77-09
ISSUE W

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.425	0.435	10.80	11.04	
B	0.295	0.305	7.50	7.74	
C	0.095	0.105	2.42	2.66	
D	0.020	0.026	0.51	0.66	
F	0.115	0.130	2.93		3.30
G	0.094 BSC		2.39		BSC
H	0.050	0.095	1.27		2.41
J	0.015	0.025	0.39		0.63
K	0.575	0.655	14.61	16.63	
M	5° TYP		5° TYP		
Q	0.148	0.158	3.76		4.01
R	0.045	0.065	1.15	1.65	
S	0.025	0.035	0.64	0.88	
U	0.145	0.155	3.69	3.93	
V	0.040	---	1.02	---	

STYLE 1:
PIN 1. EMITTER
2. COLLECTOR
3. BASE

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

