(NPN) MJ11028, MJ11030, MJ11032 (PNP) MJ11029, MJ11033

High-Current Complementary Silicon Power Transistors

... for use as output devices in complementary general purpose amplifier applications.

• High DC Current Gain –

 $h_{FE} = 1000$ (Min) @ $I_C = 25$ Adc

- $h_{FE} = 400$ (Min) @ $I_C = 50$ Adc
- Curves to 100 A (Pulsed)
- Diode Protection to Rated I_C
- Monolithic Construction with Built–In Base–Emitter Shunt Resistor
- Junction Temperature to +200°C

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Collector–Emitter Voltage	MJ11028/29 MJ11030 MJ11032/33	V _{CEO}	60 90 120	Vdc
Collector-Base Voltage	MJ11028/29 MJ11030 MJ11032/33	V _{CBO}	60 90 120	Vdc
Emitter-Base Voltage		V _{EBO}	5.0	Vdc
Collector Current – Continuous – Peak (Note 1)		Ι _C	50 100	Adc
Base Current – Continuous		Ι _Β	2.0	Adc
Total Power Dissipation @ $T_C = 25^{\circ}C$ Derate Above $25^{\circ}C$ @ $T_C = 100^{\circ}C$		P _D	300 1.71	Watts W/°C
Operating and Storage Junction Temperature Range		T _J , T _{stg}	-5 5 to +200	°C

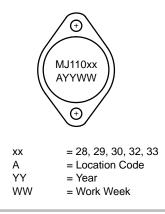
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Maximum Lead Temperature for Soldering Purposes for \leq 10 seconds	Τ _L	275	°C
Thermal Resistance, Junction-to-Case	$R_{ extsf{ heta}JC}$	0.58	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width = 5 μ s, Duty Cycle \leq 10%.

ON Semiconductor®


http://onsemi.com

50 AMPERE COMPLEMENTARY DARLINGTON POWER TRANSISTORS 60 – 120 VOLTS 300 WATTS

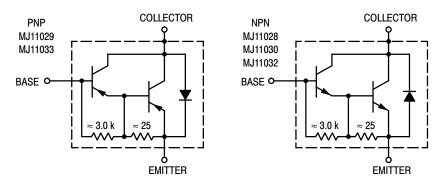
TO-204 (TO-3) CASE 197A STYLE 1

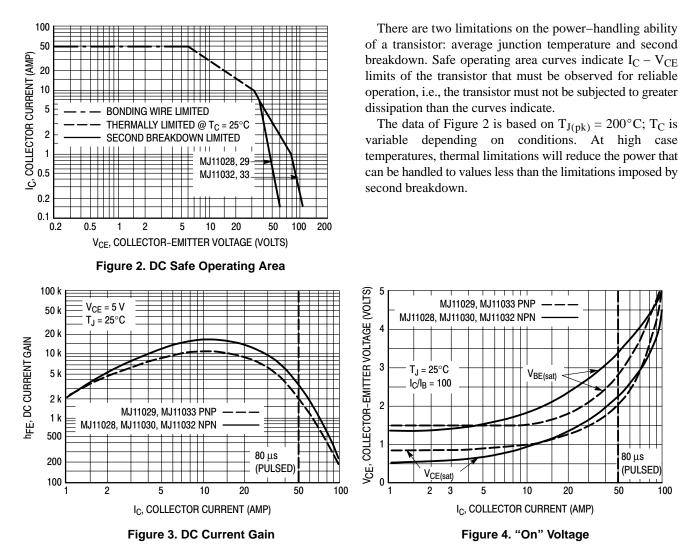
MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MJ110xx	TO-204	100 Units/Tray

(NPN) MJ11028, MJ11030, MJ11032 (PNP) MJ11029, MJ11033

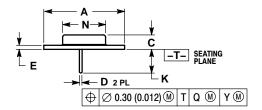


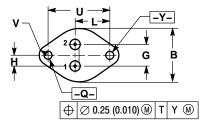

Figure 1. Darlington Circuit Schematic

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic			Min	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (Note 1)	MJ11028, MJ11029	V _{(BR)CEO}	60	—	Vdc
$(I_{\rm C} = 1 \ 00 \ {\rm mAdc}, \ I_{\rm B} = 0)$	MJ11030		90	—	
	MJ11032, MJ11033		120	_	
Collector–Emitter Leakage Current		ICER			mAdc
(V _{CE} = 60 Vdc, R _{BE} = 1 k ohm)	MJ11028, MJ11029		—	2	
(V _{CE} = 90 Vdc, R _{BE} = 1 k ohm)	MJ11030		—	2	
(V _{CE} = 120 Vdc, R _{BE} = 1 k ohm)	MJ11032, MJ11033		—	2	
(V _{CE} = 60 Vdc, R _{BE} = 1 k ohm, T _C = 150°C)	MJ11028, MJ11029		—	10	
(V _{CE} = 120 Vdc, R _{BE} = 1 k ohm, T _C = 150°C)	MJ11032, MJ11033		_	10	
Emitter Cutoff Current ($V_{BE} = 5 \text{ Vdc}, I_C = 0$)		I _{EBO}	—	5	mAdc
Collector–Emitter Leakage Current ($V_{CE} = 50$ Vdc, $I_B = 0$)		I _{CEO}	_	2	mAdc
ON CHARACTERISTICS (Note 1)					
DC Current Gain		h _{FE}			_
(I _C = 25 Adc, V _{CE} = 5 Vdc)			1 k	18 k	
$(I_C = 50 \text{ Adc}, V_{CE} = 5 \text{ Vdc})$			400	—	
Collector–Emitter Saturation Voltage		V _{CE(sat)}			Vdc
(I _C = 25 Adc, I _B = 250 mAdc)		02(000)	_	2.5	
$(I_{C} = 50 \text{ Adc}, I_{B} = 500 \text{ mAdc})$			—	3.5	
Base-Emitter Saturation Voltage		V _{BE(sat)}			Vdc
(I _C = 25 Adc, I _B = 200 mAdc)		()	—	3.0	
(I _C = 50 Adc, I _B = 300 mAdc)			—	4.5	

1. Pulse Test: Pulse Width $\leq\,$ 300 $\mu s,$ Duty Cycle $\leq\,$ 2.0%.


(NPN) MJ11028, MJ11030, MJ11032 (PNP) MJ11029, MJ11033



(NPN) MJ11028, MJ11030, MJ11032 (PNP) MJ11029, MJ11033

PACKAGE DIMENSIONS

TO-204 (TO-3) CASE 197A-05 ISSUE K

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.530 REF		38.86 REF		
в	0.990	1.050	25.15	26.67	
С	0.250	0.335	6.35	8.51	
D	0.057	0.063	1.45	1.60	
E	0.060	0.070	1.53	1.77	
G	0.430 BSC		10.92 BSC		
Н	0.215 BSC		5.46 BSC		
K	0.440	0.480	11.18	12.19	
L	0.665 BSC		16.89 BSC		
N	0.760	0.830	19.31	21.08	
Q	0.151	0.165	3.84	4.19	
U	1.187	BSC	30.15 BSC		
V	0.131	0.188	3.33	4.77	

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BSCILLC product care is sustain life, or for any other application in which the BSCILLC product care as a sustain life, or for any other application in which the BSCILLC product care as sisting out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.