YCL

PTC1111-90

LAN 10/100BASE T Non-Shield RJ45 Jack With Magnetic module

Description

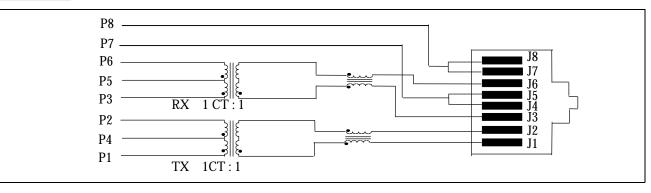
The YCL LAN modular Jack has been specifically designed for implementation of fast Ethernet NIC Application .

With high voltage isolation, optimized rise time, wideband width and stable inductance, the transformer integrated the module provide excellent performance as an analog interface. Common mode choke have been designed to significantly reduce common mode choke level which may contribute EMI emission.

YCL LAN modular jack provide the system designer the opportunity of reducing pcb space.

Feature

- Designed for network interface card application.
- Designed to meet IEEE802.3u requirement.
- Available in all turn ratios used by LAN IC manufactures.
- Primary center taps available for additional EMI reduction.
- Simplest magnetic component to place and route on PCB.
- Conserves minimizing PCB space.


Specifications

Peemeanons					
Parameter	Condition	Min.	typ	Max	unit
Inductance, note1	With 8 mAdc	350			μH
Insertion loss	@1-100MHz			1.0	dB
Return loss	@1-30MHz	16			dB
	@30-60MHz	Note2			dB
	@60-80MHz	10			dB
Cross talk	@1-60MHz	40			dB
	@60-100MHz	38			dB
CMRR(TX/RX)	@1-60MHz	45/40			dB
	@60-100MHz	40/35			dB
Voltage isolation	10mA 1sec	1500			vrms
Operating temp.		0		70	⁰ C

Note 1 : over operating temperature 0-70°C

Note 2: Greater than (16-20 log(f/30 MHz)) dB

Schematic

April 1999 R0

Data sheet subject to change without notice

SHEET 1 OF 5

No	Item	Requirement	Test or Inspection Method
1	Examination of product.	Meet requirements of product drawing	Visual, dimensional and functional per applicable inspection plan.
2	Solderability	Max. 5% de-wetting, inspection with 10 times magnification.	Inspect surface of soldering legs visually, after soldering samples mounted on a printed circuit board. Solderbath: 235°C Duration: 2 seconds. Ref: IEC 68-2-20, Ta method 1.
3	Resistance to soldering heat.	No functional damage.	Inspect Jack visually after soldering samples on a printed circuit board. Solderbath: 260°C Duration: 5 seconds. Ref. IEC 68-2-20, test Tb method 1A.
4	Contact resistance	contact resistance 10 milliohms max per initial contact resistance (ΔR 30 milliohms max. For Tool-LESS)	Subject mated Plug and Jack to 20mV open circuit at 10 mA maximum. See fig. 3. Ref: IEC 512-2,test 2a.
5	Dielectric withstanding voltage.	1000 Vac RMS dielectric withstanding voltage, 1minute hold.	Subject adjacent contacts of mated plug and jack to the specified voltage . Ref: IEC 512-2,test 4a. method B.
6	Insulation Resistance.	500 Megohms minimum.	Subject adjacent contacts of mated plug and jack to the specified voltage:500Vdc . Ref. IEC 512-2,test 3a. method B.

Test Requirements and Procedures

YCL

April.1999 R0

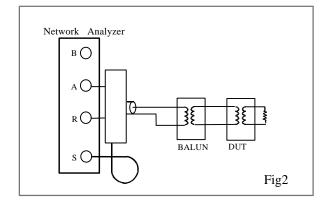
Data sheet subject to change without notice

Test Requirements and Procedures

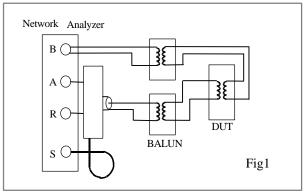
NO	ITEM	Requirement	Test or inspection Method
7	Printed circuit board retention	Module Jack should not dislodge from p.c.b	Apply load of 20 LBS to modular Jack which is mounted on a printed circuit board of 1.6mm thickness, at a rate of 25mm per minute.
8	Plug retention in Jack.	Plug shall not dislodge from Jack and shall maintain electrical continuity.	Apply axial Load of 20 LBS to modular plug which is mated to a modular Jack at a rate of 25mm per minute.
9	Vibration.	No discontinuities and show no evidence of physical damage.	Subject Modular Jack and Modular Plug to sinusoidal vibration along each of 3 mutually perpendicular axes.10 Cycles at a Level of 50m/s ² from 10-500Hz at a rate of 1 octave/minute. (Duration approx. 3 x 2 hours) Ref: IEC 68-2-6,test Fc.
10	Durability.	Contact resistance ,plug Retention and pcb retention shall meet each specified requirement	Mate and unmate Plug and Jack For 500 cycles total at a maximum rate of 500 cycles/hour. Ref: IEC 512-5,test 9a.
11	Insertion force	Insertion force should not exceed 5 pounds	Measure force necessary to mate Plug and Jack at a rate of 25mm per minute Ref:IEC512-7,test 13b.
12	Thermal shock.	Contact resistance, Insulation resistance shall meet each specified requirement .	Subject mated Plug and Jack to 25 cycles between -40°C and 70°C.The duration at the extreme temperature shall be 30 minutes. Ref: IEC 58-2-14, test N.
13	Temperature- humidity cycling.	Contact resistance, Insulation resistance shall meet each specified requirement .	Subject mated plug and Jack to10 temperature – humidity cycles between 25°C and 55°C at 95% RH. Ref.: IEC 68-2-30, test Db.

April.1999 R0

Data sheet subject to change without notice


Test Setup : Insertion Loss Measurement

The insertion loss of a device connected into a given Transmission system is defined as the ration of power (before and after insertion) delivered to the output network beyond the point of insertion at a given frequency.


Fiq1 illustrate the test circuit configuration for making insertion loss measurement. To perform the insertion loss test ,thru calibration must be done prior the measuring while the network Analyzer being selected in S21 mode.

A matching balun must be used to convert the 50ohms of output impedance of test instrument into the primary input impedance of the transformer under test.

Return loss measurement

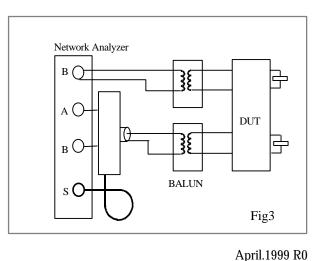
Without this matching balun, impedance mismatch between the test instrument and the transformer causes measurement error.

Return loss measure the amount of energy that is lost due to Reflection.

Reflected energy occur because of impedance mismatching these energy will reduce the overall system efficiency and emanate nuisance noise.

Fig2 illustrate the test configuration for making return Loss measurement

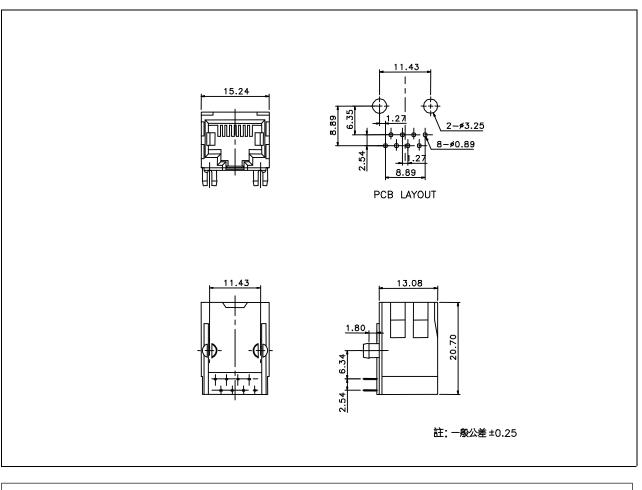
To perform the return loss test ,open ,short,load calibration Must be done prior to measuring while the network Analyzer being selected in S11 mode.


Two matching baluns with appropriate output impedance must be used to match the impedance of the transformer under test as shown in the figure above

Cross talk measurement

Cross Talk can be measured with setup shown in Fig 3 by Applying signal of identical information to the

transmit channel and detecting the coupling signal level at receive channel.


Through calibration before measurement should be done Both of transmit and receive channel should be terminated with proper load while measuring.

YCL

Data sheet subject to change without notice

Dimension:

♦ Contact	
	plating over nickel over Tin.
♦ Pin	phosphor bronze wire t 0.25mm*w0.5mm over Tin.
♦ Housing	Glass-Filled Polyester, conforming to UL Flammability Grade
	of 94V-0
	ABS, conforming to UL Flammability Grade of 94-0

For More Information

Headquarters	Asia	USA	EUROPE
Taiwan:	Taiwan:	San Diego :	Paris:
Tel: 886-7-7458587 Fax: 886-7-7459120	Tel: 886-2-27962878 Fax: 886-2-27912635 Email:dennis@ycl.com.tw	Tel : (619)5363147,5363148. Fax: (619)5363152 Email: jamescudworth@ycl.com.tw Email:stephensedio@ycl.com.tw	Tel : (33)247443901 Fax : (33)247447806 Email:mab007@calva.net Email:brbsarl@aol.com

YCL

Data sheet subject to change without notice

SHEET 5 OF 5

April. 1999 R0