

Absolute Maximum Ratings（Note 2）

Supply Voltage（ V_{CC} ）
-0.5 V to +7.0 V
DC Input Diode Current（ l_{IK} ）
$\mathrm{V}_{\mathrm{I}}=-0.5 \mathrm{~V}$
DC Input Voltage（ V_{I} ）
$-20 \mathrm{~mA}$

DC Output Diode Current（IOK）

$$
V_{O}=-0.5 \mathrm{~V}
$$

$-20 \mathrm{~mA}$
＋20 mA
DC Output Voltage（ V_{O} ）
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Source
or Sink Current（ I_{0} ）
$\pm 25 \mathrm{~mA}$
DC $V_{C C}$ or Ground Current （ICC or $I_{G N D}$ ）
$\pm 50 \mathrm{~mA}$
Storage Temperature（TSTG） $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation
180 mW

DC Electrical Characteristics

Symbol	Parameter	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
			Min	Typ	Max	Min	Max			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & 2.4 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.0 \\ & 2.4 \end{aligned}$		V		
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.6 \\ & \hline \end{aligned}$			$\begin{aligned} & \hline 0.5 \\ & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	V		
$\overline{\mathrm{V}} \mathrm{OH}$	HIGH Level Output Voltage	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.9 \\ 2.9 \\ 2.58 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \end{aligned}$		$\begin{gathered} \hline 1.9 \\ 2.9 \\ 2.48 \\ \hline \end{gathered}$		V	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA} \end{aligned}$
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.0 \\ & 0.0 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.1 \\ 0.36 \end{gathered}$		$\begin{gathered} 0.1 \\ 0.1 \\ 0.44 \end{gathered}$	V	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	$\begin{aligned} & \mathrm{lOL}=50 \mu \mathrm{~A} \\ & \mathrm{l}=50 \mu \mathrm{~A} \\ & \mathrm{l}=4 \mathrm{~mA} \\ & \hline \end{aligned}$
$\overline{I_{N}}$	Input Leakage Current	3.6			± 0.1		± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}$ or G	
ICC	Quiescent Supply Current	3.6			2.0		20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GN	

Noise Characteristics（Note 4）

Symbol	Parameter	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Units	$\mathrm{C}_{\mathrm{L}}(\mathrm{pF})$
		（V）	Typ	Limit		
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	3.3	0.3	0.5	V	50
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	3.3	－0．3	－0．5	V	50
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50

Note 4：（ nnput $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$ ）

AC Electrical Characteristics

Symbol	Parameter	V_{CC} （V）	$\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	$C_{L}(\mathrm{pF})$
			Min	Typ	Max	Min	Max		
$\begin{aligned} & \overline{t_{\text {PLH }}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Time	2.7		5.8	10.7	1.0	12.5	ns	15
				8.3	14.2	1.0	16.0		50
		3.3 ± 0.3		4.4	6.6	1.0	7.5		15
				6.9	10.1	1.0	11.5		50
tosLH toshl	Output to Output	2.7			1.5		1.5	ns	50
	Skew（Note 5）	3.3			1.5		1.5		

Capacitance

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		4	10		10	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance（Note 6）		14				pF

Note 6： $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load．
Average operating current can be obtained by the equation：$I_{C C(o p r)}=\frac{C_{P D} \times V_{C C} \times f_{I N}+I_{C C}}{4 \text {（per Gate）}}$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M14DRevB1

Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M14D

archild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
